
Artificial Neural Networks: Gradient-Based
Optimization

CSE 40171:
Artificial Intelligence

�40

�41

Homework #1 has been released
It is due at 11:59PM on 9/16

How do we train a network?

A Neural network with two layers BY-SA 3.0 Chrislb

Training Loop

1. Draw a batch of training samples x and corresponding
targets y

2. Run the network on x (forward pass) to obtain predictions
y_pred

3. Compute the loss of the network on the batch, a measure
of the mismatch between y_pred and y

4. Update the weights of the network in a way that slightly
reduces the loss on this batch

Slide credit: F. Chollet, Deep Learning with Python

Training Loop

Step 1 is easy: just some I/O code

Steps 2 & 3 just consist of a a handful of tensor operations,
also easy

Step 4, updating the network’s weights, is difficult

Given an individual weight coefficient in the network, how can we
compute whether the coefficient should be increased or
deceased, and by how much?

Slide credit: F. Chollet, Deep Learning with Python

Naive Strategy for Updating
Weights

Freeze all weights in the network except the one scalar coefficient
being considered, and try different values for it. Repeat for all
coefficients in the network.

Slide credit: F. Chollet, Deep Learning with Python

Example:

Initial value of coefficient: 0.3 Corresponding loss of net: 0.5

New value of coefficient: 0.35 Corresponding loss of net: 0.6

New value of coefficient: 0.25 Corresponding loss of net: 0.4

Why is this algorithm bad?

Gradient-Based Learning

Take advantage of the fact that all
operations used in the network are
differentiable, and compute the gradient
of the loss with respect to the network’s
coefficients.

Move coefficients in the opposite direction
from the gradient, thus decreasing the loss

Slide credit: F. Chollet, Deep Learning with Python

Derivatives

Consider a continuous, smooth function f (x) = y, mapping a real
number x to a new real number y

Slide credit: F. Chollet, Deep Learning with Python

The function is continuous: a small change in x can only result in a
small change in y

If x is increased by a small factor 𝜀x this results in a small 𝜀y change to
y:

f (x + 𝜀x) = y + 𝜀y

Derivatives

Slide credit: F. Chollet, Deep Learning with Python

 f (x) = y, is a smooth function (the curve doesn’t have any abrupt
angles)

When 𝜀x is small enough, around a certain point p, it’s possible to
approximate f as a linear function of slope a, so that 𝜀y becomes
a * 𝜀x:

f (x + 𝜀x) = y + a × 𝜀y

This linear approximation is valid only when x is close enough to p

Derivative of f in p

f

Local linear
approximation of f,

with a slope a

The slope a is called the
derivative of f in p

If a is negative, it means a small change of x around p will result in a
decrease of f (x)

If a is positive, a small change in x will result in an increase of f (x)

Absolute value of a tells you how quick this increase or decrease will
happen

Slide credit: F. Chollet, Deep Learning with Python

Differentiable functions
For every differentiable function f (x), there exists a derivative
function f ′(x) that maps values of x to the slope of the local linear
approximation of f in those points

Slide credit: F. Chollet, Deep Learning with Python

Examples:

The derivative of cos(x) is -sin(x)

The derivative of f (x) = a × x is f ′(x) = a

The derivative completely describes how f (x) evolves as you change x

If you want to reduce the value of f (x), you just need to move x a little in
the opposite direction of the derivative

Derivative of a tensor operation: the
gradient

A gradient is the generalization of the concept of derivatives to
functions of multidimensional inputs

Slide credit: F. Chollet, Deep Learning with Python

Consider an input vector x, a matrix W, a target y, and a loss function
loss. You can use W to compute a target candidate ypred and compute
the loss, or mismatch, between the target candidate ypred and the
target y:

ypred = dot(W, x)

loss_value = loss(ypred, y)

If data inputs x and y are frozen, then:
loss_value = f (W)

Derivative of a tensor operation: the
gradient

Slide credit: F. Chollet, Deep Learning with Python

Let’s say the current value of W is W0

The derivative of f in W0 is a tensor gradient(f)(W0) with the same
shape as W,
‣ Each coefficient gradient(f)(W0)[i, j] indicates the direction and

magnitude of the change in loss observed when modifying W0[i, j]
‣ The tensor gradient gradient(f)(W0) is the gradient of f (W) = loss_value in

W0

gradient(f)(W0) can be interpreted as the tensor describing the
curvature of f(W) around W0

Derivative of a tensor operation: the
gradient

Slide credit: F. Chollet, Deep Learning with Python

Gradient descent example BY-SA 3.0 Роман Сузи

You can reduce f (W) by moving
W in the opposite direction from
the gradient

Example:
W1 = W0 - step × gradient(f)(W0)

Moves go against the curvature,
which intuitively should put you
lower on the curve

Analytical Solution?

Slide credit: F. Chollet, Deep Learning with Python

Yes: solve the equation gradient(f)(W) = 0 for W.

This is a polynomial equation of N variables, where N is
the number of coefficients in the network

How many coefficients are we typically dealing with
in a modern neural network?

Finding the best weights: Hill Descent

Image credit: Abu-Mostafa, Magdon-Ismail, Lin, Learning from Data

How do we get to the bottom of
the deepest valley?

How do we do this if we don’t
have gravity?

Mini-batch Stochastic Gradient
Descent (SGD)

1. Draw a batch of training samples x and corresponding targets y

2. Run the network on x to obtain predictions y_pred

3. Compute the loss of the network on the batch a measure of
mismatch between y_pred and y

4. Compute the gradient of the loss with respect to the network’s
parameters (a backward pass)

5. Move the parameters a little in the opposite direction from the
gradient, thus reducing the loss on the batch a bit

Slide credit: F. Chollet, Deep Learning with Python

SGD down a 1D loss curve

Step, also called learning rate
Loss
Value

Parameter
Value

Starting Point
(t = 0)

t = 1

t = 2

t = 3

Selecting a step value

Slide credit: F. Chollet, Deep Learning with Python

It’s important to pick a reasonable
value for the step factor

What happens if we choose a
value that is too small?

What happens if we choose a
value that is too large?

Too Small Too Large Variable (Just Right)

step = 0.1; 75 steps step = 2; 10 steps step = variable; 10 steps

Image credit: Abu-Mostafa, Magdon-Ismail, Lin, Learning from Data

Other SGD Variants

True SGD: draw a single sample and target at each iteration, rather than
drawing a batch of data

Batch SGD: run every step on all available data

‣ Each update would be more accurate, but far more expensive

Mini-Batch SGD is an efficient compromise between the two strategies

Gradient Descent Stochastic Gradient Descent

Image credit: Abu-Mostafa, Magdon-Ismail, Lin, Learning from Data

Momentum

Image credit: Abu-Mostafa, Magdon-Ismail, Lin, Learning from Data

How can we mitigating the problem off
getting stuck in bad local minima?

A momentum term addresses two problems with SGD:
local minima and convergence speed

Momentum

Imagine the optimization as a small ball
rolling down the loss curve. If it has enough
momentum, it won’t get stuck in a ravine and
will end up at the global minimum.

Implement by moving the ball at each step based not only on the
current slope value (current acceleration) but also on the current
velocity (from past acceleration).

i.e., update parameter w based on the current gradient and on the
previous parameter update

How do we compute the gradient?

�65https://google-developers.appspot.com/machine-learning/crash-course/backprop-scroll/

PyTorch Example

How does PyTorch train the following network?

Example adapted from: http://bit.ly/2Er1Cy0

What is the learning rule used by
the brain?

�67

