
Artificial Neural Networks: Gradient-Based 
Optimization
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Homework #1 has been released 
It is due at 11:59PM on 9/16



How do we train a network?

A Neural network with two layers       BY-SA 3.0 Chrislb



Training Loop

1. Draw a batch of training samples x and corresponding 
targets y 

2. Run the network on x (forward pass) to obtain predictions 
y_pred 

3. Compute the loss of the network on the batch, a measure 
of the mismatch between y_pred and y 

4. Update the weights of the network in a way that slightly 
reduces the loss on this batch

Slide credit: F. Chollet, Deep Learning with Python



Training Loop

Step 1 is easy: just some I/O code 

Steps 2 & 3 just consist of a a handful of tensor operations, 
also easy

Step 4, updating the network’s weights, is difficult

Given an individual weight coefficient in the network, how can we 
compute whether the coefficient should be increased or 
deceased, and by how much?

Slide credit: F. Chollet, Deep Learning with Python



Naive Strategy for Updating 
Weights

Freeze all weights in the network except the one scalar coefficient 
being considered, and try different values for it. Repeat for all 
coefficients in the network.

Slide credit: F. Chollet, Deep Learning with Python

Example: 

Initial value of coefficient: 0.3 Corresponding loss of net: 0.5

New value of coefficient: 0.35 Corresponding loss of net: 0.6

New value of coefficient: 0.25 Corresponding loss of net: 0.4

Why is this algorithm bad?



Gradient-Based Learning

Take advantage of the fact that all 
operations used in the network are 
differentiable, and compute the gradient 
of the loss with respect to the network’s 
coefficients.

Move coefficients in the opposite direction 
from the gradient, thus decreasing the loss

Slide credit: F. Chollet, Deep Learning with Python



Derivatives

Consider a continuous, smooth function f (x) = y, mapping a real 
number x to a new real number y

Slide credit: F. Chollet, Deep Learning with Python

The function is continuous: a small change in x can only result in a 
small change in y

If x is increased by a small factor 𝜀x this results in a small 𝜀y change to 
y:

f (x + 𝜀x) = y + 𝜀y



Derivatives

Slide credit: F. Chollet, Deep Learning with Python

 f (x) = y, is a smooth function (the curve doesn’t have any abrupt 
angles)

When 𝜀x is small enough, around a certain point p, it’s possible to 
approximate f as a linear function of slope a, so that 𝜀y becomes 
a * 𝜀x:

f (x + 𝜀x) = y + a × 𝜀y

This linear approximation is valid only when x is close enough to p



Derivative of f in p

f

Local linear 
approximation of f,  

with a slope a

The slope a is called the 
derivative of f in p

If a is negative, it means a small change of x around p will result in a 
decrease of f (x)

If a is positive, a small change in x will result in an increase of f (x)

Absolute value of a tells you how quick this increase or decrease will 
happen

Slide credit: F. Chollet, Deep Learning with Python



Differentiable functions
For every differentiable function f (x), there exists a derivative 
function f ′(x) that maps values of x to the slope of the local linear 
approximation of f in those points

Slide credit: F. Chollet, Deep Learning with Python

Examples:

The derivative of cos(x) is -sin(x)

The derivative of f (x) = a × x is f ′(x) = a

The derivative completely describes how f (x) evolves as you change x

If you want to reduce the value of f (x), you just need to move x a little in 
the opposite direction of the derivative



Derivative of a tensor operation: the 
gradient

A gradient is the generalization of the concept of derivatives to 
functions of multidimensional inputs

Slide credit: F. Chollet, Deep Learning with Python

Consider an input vector x, a matrix W, a target y, and a loss function 
loss. You can use W to compute a target candidate ypred and compute 
the loss, or mismatch, between the target candidate ypred and the 
target y:

ypred = dot(W, x)

loss_value = loss(ypred, y)

If data inputs x and y are frozen, then:
loss_value = f (W)



Derivative of a tensor operation: the 
gradient

Slide credit: F. Chollet, Deep Learning with Python

Let’s say the current value of W is W0

The derivative of f in W0 is a tensor gradient( f )(W0) with the same 
shape as W,  
‣ Each coefficient gradient( f )(W0)[i, j] indicates the direction and 

magnitude of the change in loss observed when modifying W0[i, j] 
‣ The tensor gradient gradient( f )(W0) is the gradient of f (W) = loss_value in 

W0

gradient( f )(W0) can be interpreted as the tensor describing the 
curvature of f(W) around W0



Derivative of a tensor operation: the 
gradient

Slide credit: F. Chollet, Deep Learning with Python

Gradient descent example      BY-SA 3.0 Роман Сузи

You can reduce f (W) by moving 
W in the opposite direction from 
the gradient

Example:
W1 = W0 - step × gradient( f )(W0)

Moves go against the curvature, 
which intuitively should put you 
lower on the curve



Analytical Solution?

Slide credit: F. Chollet, Deep Learning with Python

Yes: solve the equation gradient( f )(W) = 0 for W. 

This is a polynomial equation of N variables, where N is 
the number of coefficients in the network  

How many coefficients are we typically dealing with 
in a modern neural network?



Finding the best weights: Hill Descent

Image credit: Abu-Mostafa, Magdon-Ismail, Lin, Learning from Data

How do we get to the bottom of 
the deepest valley?

How do we do this if we don’t 
have gravity?



Mini-batch Stochastic Gradient 
Descent (SGD)

1. Draw a batch of training samples x and corresponding targets y 

2. Run the network on x to obtain predictions y_pred  

3. Compute the loss of the network on the batch a measure of 
mismatch between y_pred and y 

4. Compute the gradient of the loss with respect to the network’s 
parameters (a backward pass) 

5. Move the parameters a little in the opposite direction from the 
gradient, thus reducing the loss on the batch a bit

Slide credit: F. Chollet, Deep Learning with Python



SGD down a 1D loss curve

Step, also called learning rate
Loss
Value

Parameter
Value

Starting Point 
(t = 0)

t = 1

t = 2

t = 3



Selecting a step value

Slide credit: F. Chollet, Deep Learning with Python

It’s important to pick a reasonable 
value for the step factor

What happens if we choose a 
value that is too small?

What happens if we choose a 
value that is too large?



Too Small Too Large Variable (Just Right)

step = 0.1; 75 steps step = 2; 10 steps step = variable; 10 steps

Image credit: Abu-Mostafa, Magdon-Ismail, Lin, Learning from Data



Other SGD Variants

True SGD: draw a single sample and target at each iteration, rather than 
drawing a batch of data 

Batch SGD: run every step on all available data

‣ Each update would be more accurate, but far more expensive

Mini-Batch SGD is an efficient compromise between the two strategies



Gradient Descent Stochastic Gradient Descent 

Image credit: Abu-Mostafa, Magdon-Ismail, Lin, Learning from Data



Momentum

Image credit: Abu-Mostafa, Magdon-Ismail, Lin, Learning from Data

How can we mitigating the problem off 
getting stuck in bad local minima? 

A momentum term addresses two problems with SGD: 
local minima and convergence speed



Momentum

Imagine the optimization as a small ball 
rolling down the loss curve. If it has enough 
momentum, it won’t get stuck in a ravine and 
will end up at the global minimum.

Implement by moving the ball at each step based not only on the 
current slope value (current acceleration) but also on the current 
velocity (from past acceleration).

i.e., update parameter w based on the current gradient and on the 
previous parameter update



How do we compute the gradient?



�65https://google-developers.appspot.com/machine-learning/crash-course/backprop-scroll/



PyTorch Example

How does PyTorch train the following network?

Example adapted from: http://bit.ly/2Er1Cy0



What is the learning rule used by 
the brain?
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