Open Issues in Open World Learning

WALTER J. SCHEIRER UNIVERSITY OF NOTRE DAME

WHY DON'T WE HAVE SAFE SELF-DRIVING CARS IN 2024?

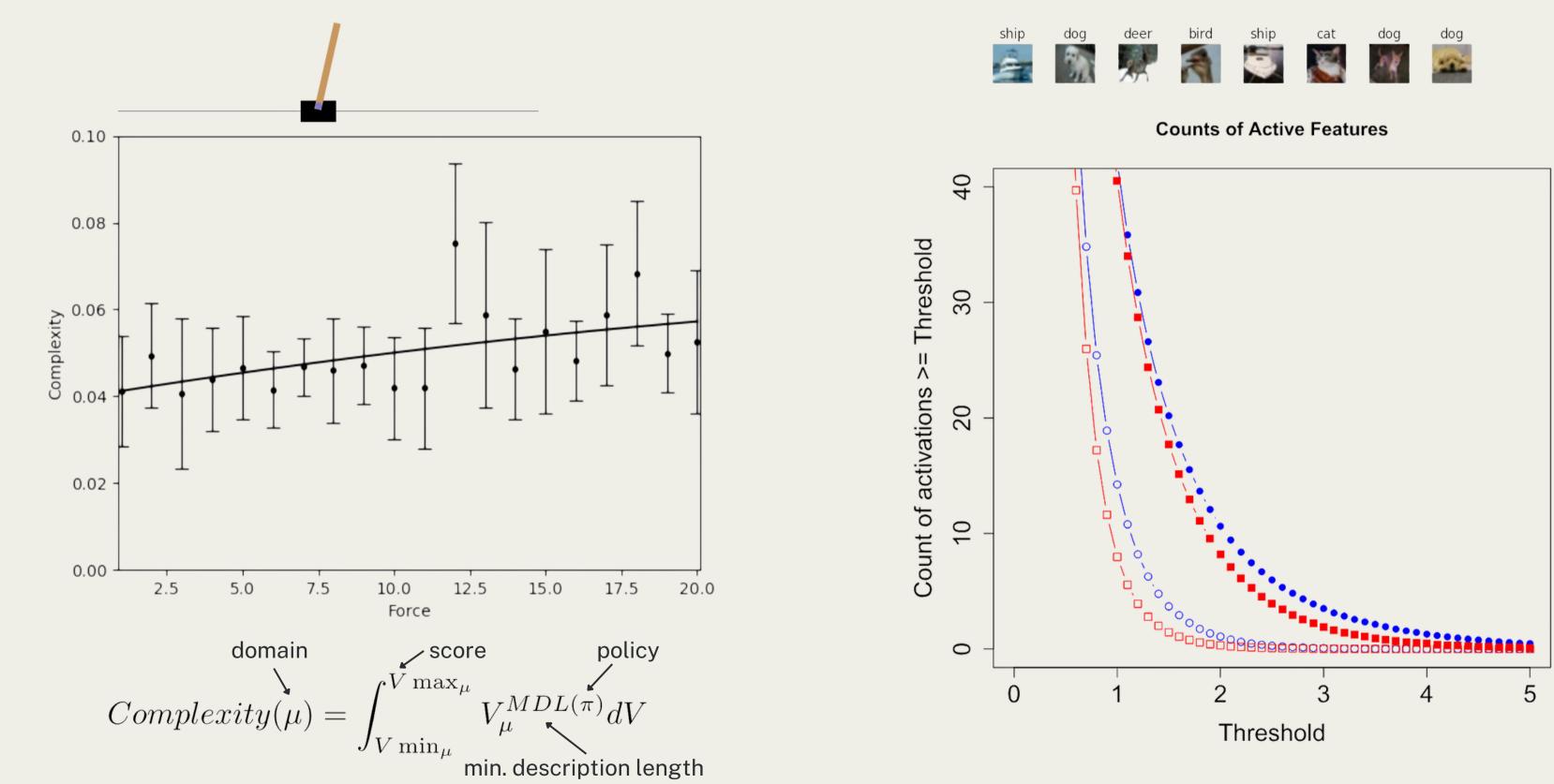
Significant shortcoming of the big data strategy for machine learning: it necessarily **under-samples** the world, often drastically.

"There are 'countably infinite things' that can possibly happen" [on the road].

- Neil Lawrence on \underline{X} (2019)

CARTPOLE

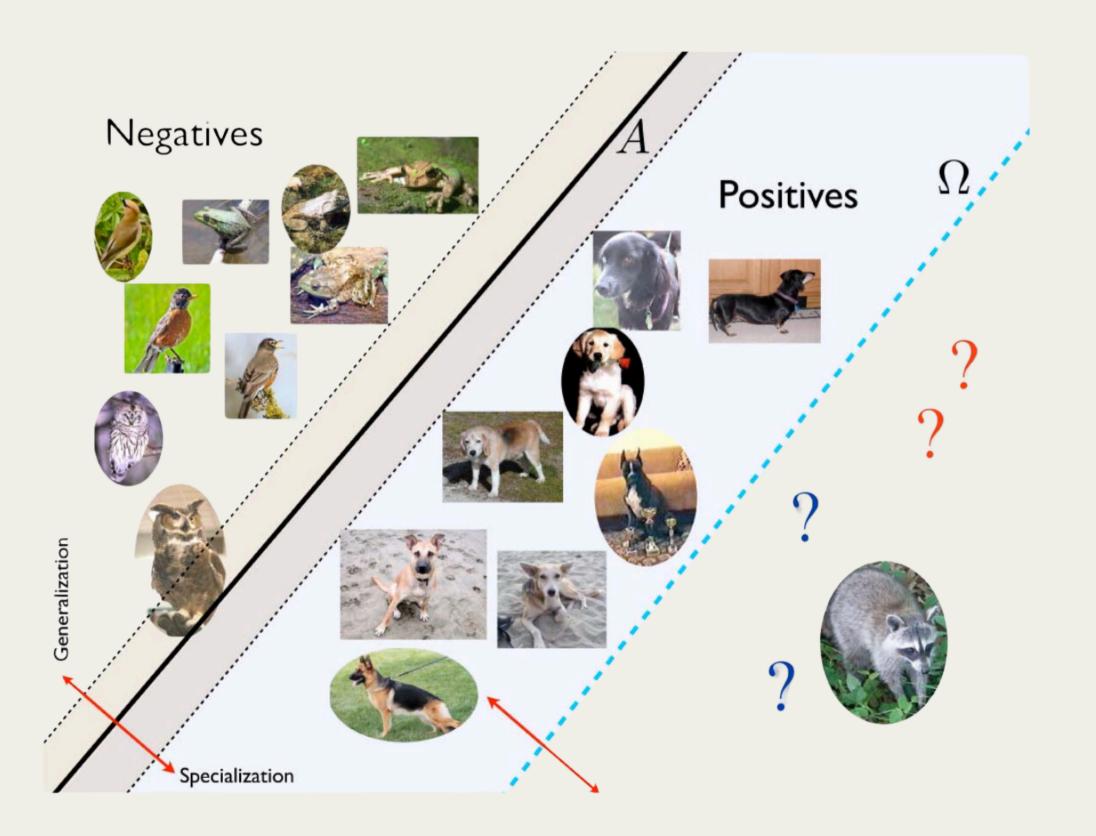
CIFAR-10



Pereyda and Holder, "Measuring the Complexity of Domains Used to Evaluate AI Systems, "AAAI Spring Symposium on Designing AI for Open Worlds 2022

Dietterich and Guyer, "The Familiarity Hypthesis: Explaining the Behavior of Deep Open Set Methods," *Pattern Recognition* 2022

WHY IS NOVELTY SUCH A CONFOUND?



Scheirer et al., "Toward Open Set Recognition," IEEE T-PAMI 2012

Training

We always have incomplete knowledge of the world at training time for open world domains.

Basis

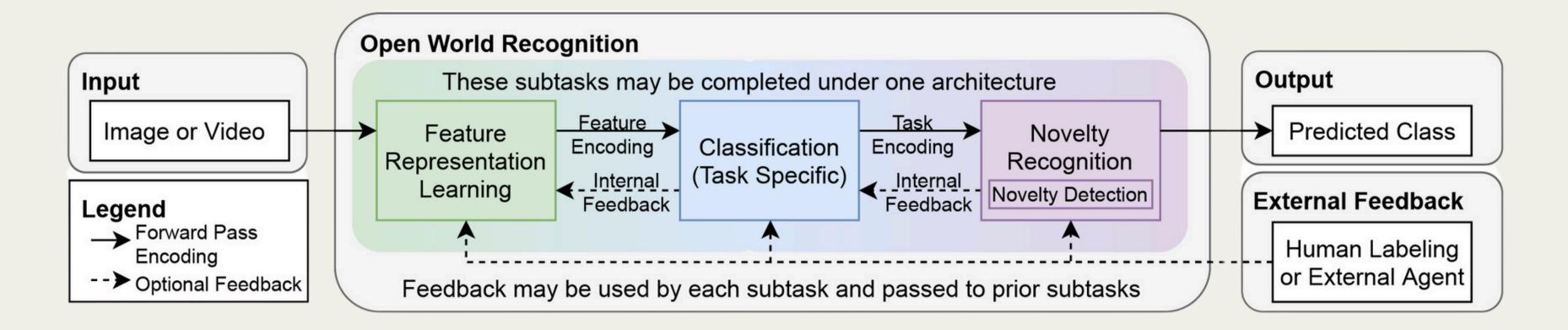
There is no basis from which to generalize to novel data from known data, both of which are typically far away from each other in a feature space.

Generation

New things appear in an open environment all of the time. This isn't restricted to object classes. Novel activities and interactions are also significant confounds.

O BE MANAGE

OPEN WORLD AGENT TEMPLATE



Note 1: Novelty detection and characterization turn out to be really hard Note 2: Efficient incremental learning is necessary Note 3: Classifier research not very popular right now

DARPA SAIL-ON PROGRAM

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

> Defense Advanced Research Projects Agency > Our Research > Science of Artificial Intelligence and Learning for Open-world Novelty

Science of Artificial Intelligence and Learning for **Open-world Novelty (SAIL-ON) (Archived)**

Current artificial intelligence (AI) systems excel at tasks defined by rigid rules – such as mastering the board games Go and chess with proficiency surpassing world-class human players. However, AI systems aren't very good at adapting to constantly changing conditions commonly faced by troops in the real world – from reacting to an adversary's surprise actions, to fluctuating weather, to operating in unfamiliar terrain. For AI systems to effectively partner with humans across a spectrum of military applications, intelligent machines need to graduate from closed-world problem solving within confined boundaries to open-world challenges characterized by fluid and novel situations.

The Science of Artificial Intelligence and Learning for Open-world Novelty (SAIL-ON) program intends to research and develop the underlying scientific principles, general engineering techniques, and algorithms needed to create AI systems that act appropriately and effectively in novel situations that occur in open worlds. The program's goals are to develop scientific principles to quantify and characterize novelty in open-world domains, create AI systems that react to novelty in those domains, and demonstrate and evaluate these systems in a selected DoD domain.

https://www.darpa.mil/program/science-of-artificial-intelligence-and-learning-for-open-world-novelty

\equiv EXPLORE BY TAG

ABOUT US / OUR RESEARCH / NEWS / EVENTS / WORK WITH US / 🔍

DARPA SAIL-ON PROGRAM: ORGANIZATION

			Open World Novelty Hierarchy
Single Entities	Phase 1	1	Objects: New classes, attributes, or representations of r
	Phase 2	2	Agents: New classes, attributes, or representations of vo
		3	Actions: New classes, attributes, or representations of e
Multiple Entities		4	Relations: New classes, attributes, or representations of multiple entities.
		5	Interactions: New classes, attributes, or representation multiple entities.
Complex Phenomena	Phase 3	6	Rules: New classes, attributes, or representations of glo
		7	Goals: New classes, attributes, or representations of ex
		8	Events: New classes, attributes, or representations of service result of volitional action by an external agent or the SAI

- non-volitional entities.
- volitional entities.
- external agent behavior.
- of static properties of the relationships between
- ons of dynamic properties of behaviors impacting
- lobal constraints that impact all entities.
- xternal agent objectives.
- series of state changes that are not the direct IL-ON agent.

DARPA SAIL-ON PROGRAM: METRICS

Туре	Name	Measure	
Detection	M1	FN _{CDT}	Mea
(Distribution Change Detection)	M2	CDT%	% of
	M2.1	FP%	% of
Accommodation (Task Performance)	M3,M4	NRP	
	AM1	Overall PTI (OPTI)	
	AM2	Asymptotic PTI (APTI)	$\frac{1}{\sum_{i=N_T-n}^{N_T}}$

Definition

an # of FNs among CDTs

CDTs (among all Trials)

Trials with at least 1 FP

$$\frac{\sum P_{Post,\alpha}}{\sum P_{Pre,\beta}}$$

$$\frac{\sum P_{Post,\alpha}}{\sum P_{Post,\alpha} + \sum P_{Post,\beta}}$$
$$\frac{\sum_{i=N_T-m}^{N_T} P_{Post,\alpha}}{\sum_{i=N_T-m}^{N_T} P_{Post,\alpha}}$$

 $P_{Post,\alpha} + \sum_{i=N_T-m}^{N_T} P_{Post,\beta}$

DARPA SAIL-ON PROGRAM: WHAT DID WE LEARN?

Open Issues in Open World Learning

1. Need for Better Developed Theories of Novelty

2. Differences Between Activity and Perceptual Domains

3. Domain Independence

4. Better Representation for Novelty Learning

5. Robustness to Novelty Versus Novelty Detection and Characterization

6. Risk-Based Reasoning

7. Spectrum of Partial Knowledge the System Designer Has About Novelties

8. Lack of Measures Specific to Open World Learning

Novelty Category

Theory of Novelty

Theory of Novelty

Design of Agents

Design of Agents

Design of Agents

Design of Agents

Evaluation of Agents

Evaluation of Agents

1. NEED FOR BETTER DEVELOPED THEORIES OF NOVELTY

Plato (Timaeus): new things are generated by reconfiguring existing material into a new form through the guidance of set patterns.

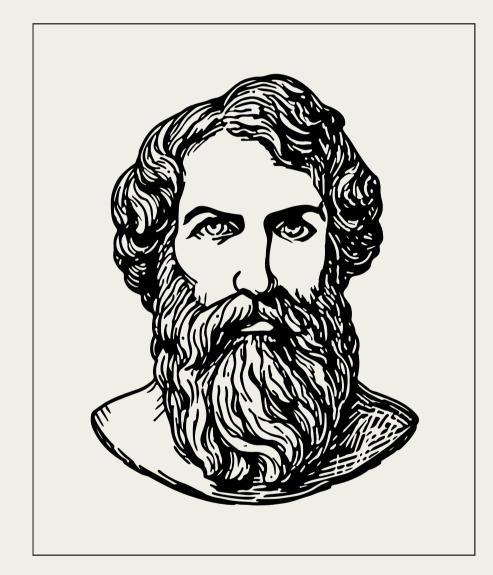
Kuhn: novelty reduces to the perception of things in an environment that are new to the observer.¹

Langley: environmental change in a generative mode is the basis of novelty.²

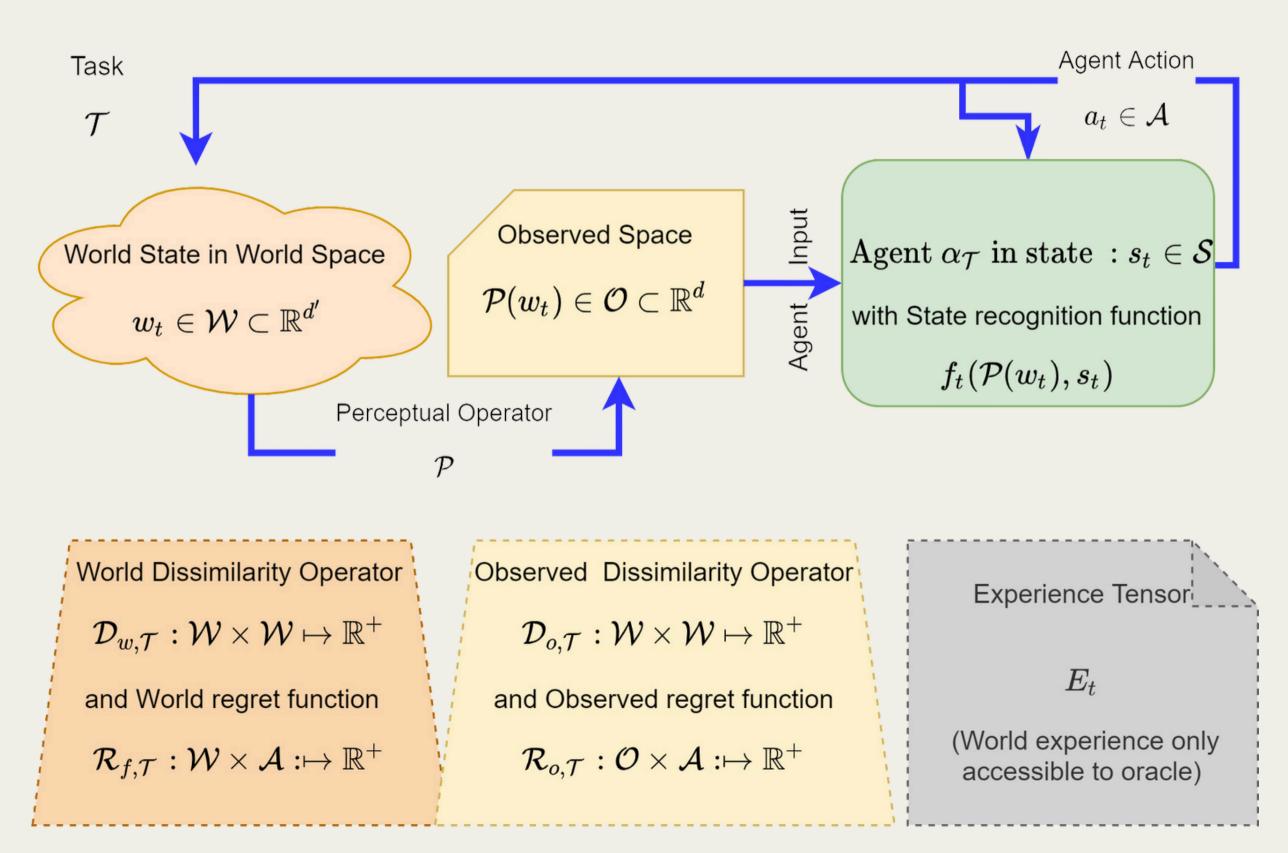
Theory of Novelty

1. Kuhn, "Second thoughts on paradigms," *The Structure of Scientific Theories* 2, 1974, pp. 459–482.

2. Langley, "Open-world learning for radically autonomous agents," AAAI 2020.



1. NEED FOR BETTER DEVELOPED THEORIES OF NOVELTY



Boult et al., "Towards a unifying framework for formal theories of novelty," AAAI 2021

1. NEED FOR BETTER DEVELOPED THEORIES OF NOVELTY

Open Questions:

- Given the two overarching framings of environmental novelty and agent-centric novelty, is it possible to reconcile them into a single theory?
- Is there any theoretical basis for a novelty hierachy?
- Does any extant theory help make predictions about agents and their interactions with the environment that can help guide agent design?

 $\phi = \beta$ A = FSA = mg $A = \frac{kx^2}{2}$ $N = \frac{A}{t}$ $N = F_1$ N = J $E_{k} = \frac{m}{2}$ $E_p = m$ $E = \frac{k_1}{2}$ $E = E_k$ $A = \frac{m}{2}$ $\eta = 1$

$$S\cos(Bn) = \Delta = k\lambda - max$$

$$\omega_{0} = \frac{1}{\sqrt{LC}} T = 2\pi\sqrt{LC} \quad \upsilon = 2\pi Rn = \omega R$$

$$\int \frac{1}{\sqrt{LC}} T = 2\pi\sqrt{LC} \quad \upsilon = 2\pi Rn = \omega R$$

$$\int \frac{1}{\sqrt{LC}} T = 2\pi\sqrt{LC} \quad \upsilon = 2\pi Rn = \omega R$$

$$\int \frac{1}{\sqrt{LC}} T = 2\pi\sqrt{LC} \quad \upsilon = 2\pi Rn = \omega R$$

$$\int \frac{1}{\sqrt{LC}} T = 2\pi\sqrt{LC} \quad \upsilon = 2\pi Rn = \omega R$$

$$\int \frac{1}{\sqrt{LC}} P = \sqrt{\frac{3kT}{m_{e}}} = \sqrt{\frac{3kT}{M}} \quad S_{e} = x - x_{0}$$

$$\int \frac{1}{\sqrt{LC}} P = \sqrt{RT} \quad h_{max} = \frac{v_{0}^{2}}{2g} \quad a = \frac{v - v_{0}}{t}$$

$$\int \frac{1}{\sqrt{LC}} P = \sqrt{RT} \quad h_{max} = \frac{v_{0}^{2}}{2g} \quad a = \frac{v - v_{0}}{t}$$

$$\int \frac{1}{\sqrt{LC}} P = \sqrt{RT} \quad h_{max} = \frac{v_{0}^{2}}{2g} \quad a = \frac{v - v_{0}}{t}$$

$$\int \frac{1}{\sqrt{LC}} P = \sqrt{RT} \quad h_{max} = \frac{v_{0}^{2}}{2g} \quad a = \frac{v - v_{0}}{t}$$

$$\int \frac{1}{\sqrt{LC}} P = \sqrt{RT} \quad h_{max} = \frac{v_{0}^{2}}{2g} \quad a = \frac{v - v_{0}}{t}$$

$$\int \frac{1}{\sqrt{LC}} P = \sqrt{RT} \quad h_{max} = \frac{v_{0}^{2}}{2g} \quad a = \frac{v - v_{0}}{t}$$

$$\int \frac{1}{\sqrt{LC}} P = \sqrt{RT} \quad h_{max} = \frac{v_{0}^{2}}{R} \quad v = \frac{1}{R} \quad h_{0} = \frac{v_{0}}{2g} \quad u = \frac{v_{0} + v_{0}}{t}$$

$$\int \frac{1}{\sqrt{LC}} P = \sqrt{RT} \quad h_{max} = \frac{v_{0}^{2}}{R} \quad v = \frac{1}{R} \quad h_{0} = \frac{v_{0}}{R} \quad v = \frac{1}{R} \quad h_{0} = \frac{v_{0}}{R} \quad v = \frac{1}{R} \quad v = \frac{1}{R} \quad h_{0} = \frac{v_{0}}{R} \quad v = \frac{1}{R} \quad h_{0} = \frac{1}{R} \quad v = \frac{1}{R} \quad v$$

2. DIFFERENCES BETWEEN ACTIVITY AND PERCEPTUAL DOMAINS

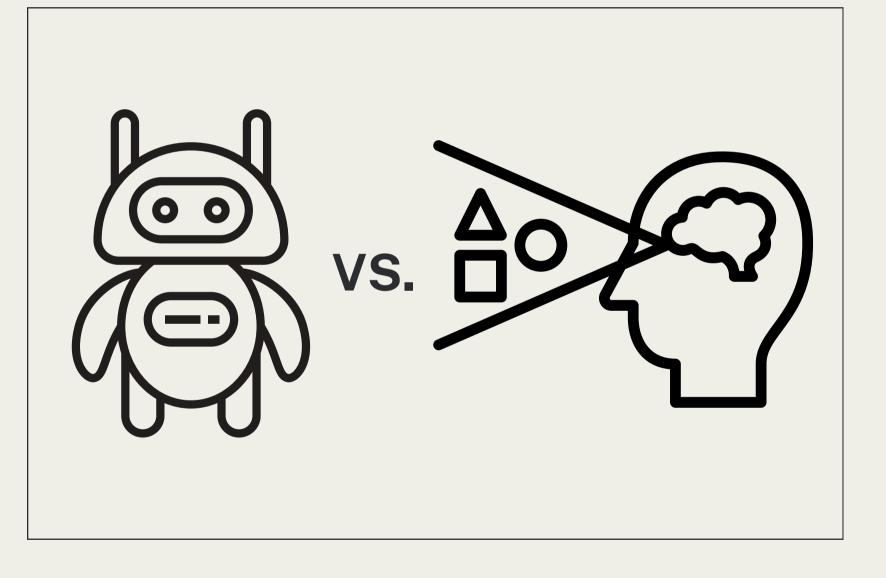
Activity Domains: interactive environments where an agent attempts to achieve and objective by making state transitions that are favorable to it.

Example: Robot agent in the physical world.

Perceptual Domains: focus on the sensing aspect of agents in a non-interactive environment.

Example: Object recognition in computer vision.

Theory of Novelty



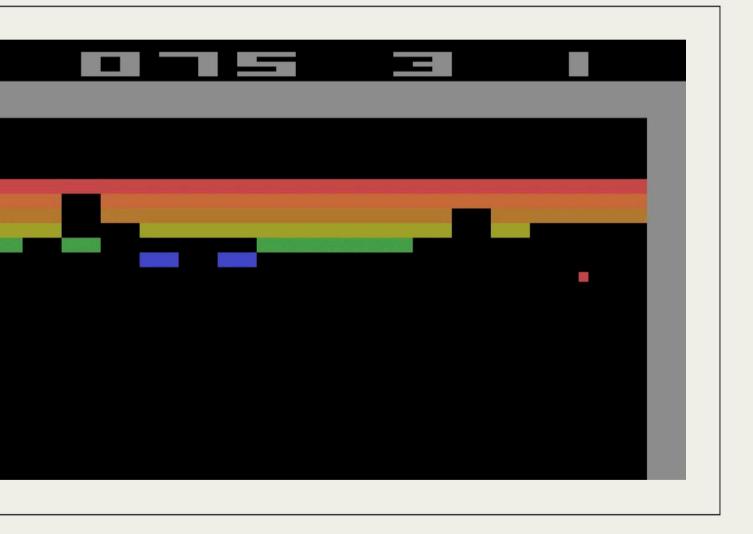
2. DIFFERENCES BETWEEN ACTIVITY AND PERCEPTUAL DOMAINS

Can the two be reconciled?

Some hints that this is possible:

- Mobile robotics
- DeepMind-style video game play (Mnih et al. NeurIPS 2013)
- Predictive Coding (Burachas et al. AAAI Spring Symposium on Designing AI for Open Worlds 2022)
- Dissimilarity assessment through agent observation (Boult et al. AAAI 2021)

Mnih et al., "Playing Atari with deep reinforcement learning," NeurIPS 2013 Burachas et al., "Metacognitive mechanisms for novelty processing: Lessons for AI," AAAI Spring Symposium on Designing AI for Open Worlds 2022 Boult et al., "Towards a unifying framework for formal theories of novelty," AAAI 2021

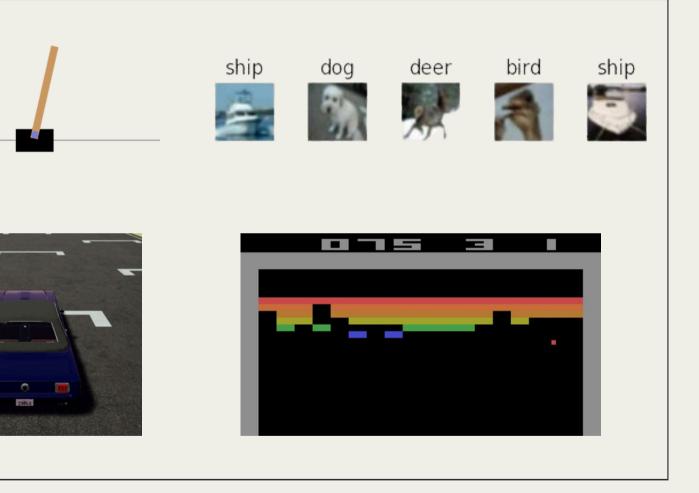


Bold claims about deep learning generalization have never been true: deep nets are limited to just a single domain – the one associated with the training data (Chollet 2017).

Planning suffers from a similar problem: if an agent moves to a new environment, the old plan may provide it no useful information.

Design of agents





3. DOMAIN INDEPENDENCE

The big challenge: crossing between activity and perceptual domains.

Is it possible to have a feature representation that applies in a universal way?

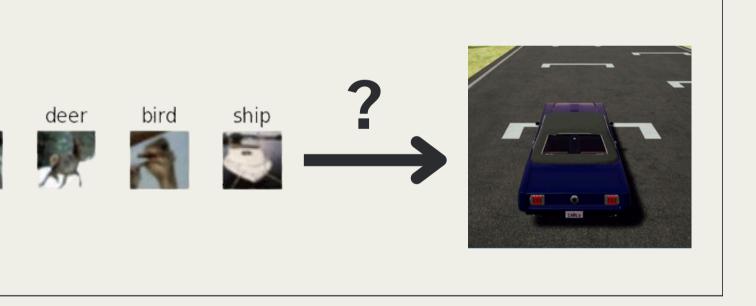
- No such feature representation currently exists
- One possibility is to pick a universal representation (e.g., spectrogram) and transform all forms of data into it (Qiu et al. ICML 2021).

One is left minimizing domain dependence, rather than achieving strict domain independence

Qiu et al., "Neural transformation learning for deep anomaly detection beyond images," ICML 2021

ship

dog



4. BETTER REPRESENTATION FOR NOVELTY LEARNING

A few more thoughts on representation:

- There is an intrinsic link between the goodness of a representation and the ability to detect novelty.
- If known information can be clearly represented, then what is different from it can be discerned without significant effort.
- If there is too much aliasing between known and unknown information, false positives and false negatives will result.

Design of Agents

4. BETTER REPRESENTATION FOR NOVELTY LEARNING

Representation Edit Distance (RED) (Alspector AAAI Spring Symposium on Designing AI for Open Worlds 2022)

Measure of novelty that can be used by agents to adapt to it.

Change in information content in bit strings is measured by comparing pre- and post-novelty skill programs.

Bit string representations works across knowledge graphs, regressors, NNs, and even intuitive representations of knowledge.

Constraint: information theory setting; need good approximations to what should be formally optimal elements in the framework.

$$RED_{a,T,C}^{\theta} = \frac{Cpretr\left(TrSol_{T}^{\theta} \middle| a_{t=0}\right)[]to]O_{T}}{Cpost\left(Sol_{T}^{\theta}\right)}$$

Alspector, "Representation edit distance as a measure of novelty," AAAI Spring Symposium on Designing AI for Open Worlds 2022

 $Cpost~(Sol_T^{ heta})$

5. ROBUSTNESS TO NOVELTY VERSUS NOVELTY DETECTION AND CHARACTERIZATION

Huge amount of literature dedicated to novelty detection (hundreds of references as noted by Ruff et al. 2021)

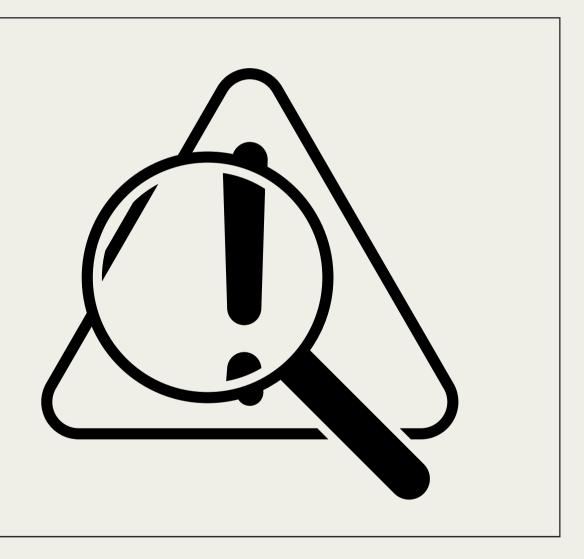
• Not inherently useful by itself!

Novelty characterization is necessary to sort out nuisance novelty from novelties that must be processed by an agent

• Need a regret calculation for this

Novelty adaptation means an agent uses novel information to adjust its decision making process or as conditioning to ignore it.

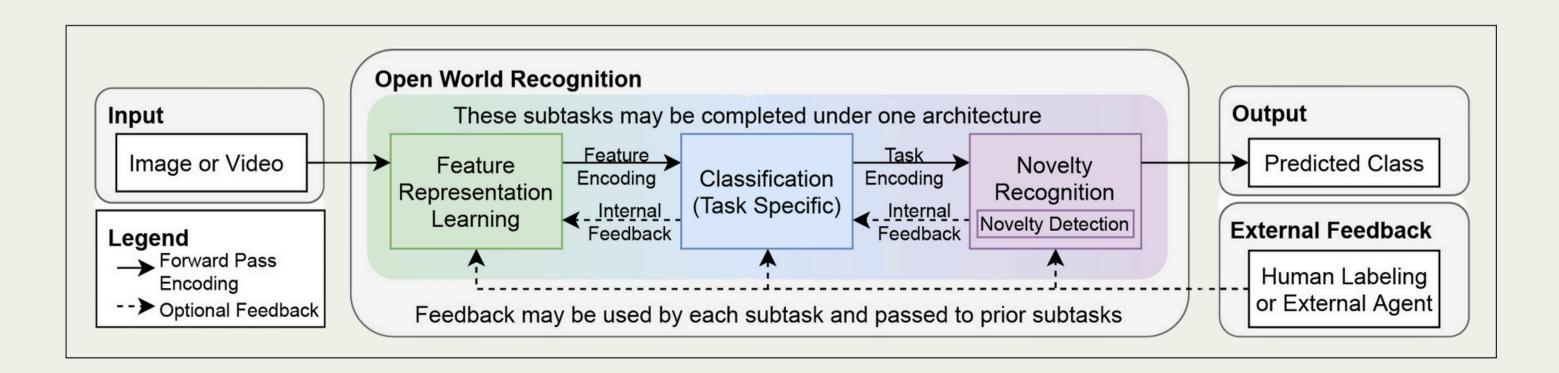
Design of Agents



5. ROBUSTNESS TO NOVELTY VERSUS NOVELTY DETECTION AND CHARACTERIZATION

Strategy for perceptual domains: (1) feature extraction via NN, (2) novelty detection using extracted features, (3) clustering over novel features to identify new categories of novelty, (4) incremental learning to incorporate a new type of novelty back into the model.

Strategy for activity domains: (1) agent senses information from environment, (2) novelty detection using sensed information, (3) a detected novelty is characterized, (4) the agent's plan is revised to incorporate the novelty.



Novelty detection carries the **risk** of being **too insensitive** to hard-to-detect instances of novelty or being **overly sensitive** to all instances of novelty, leading to nuisance novelty.

Risk is abstracted by Boult et al. (AAAI 2021) as a regret operator on the world state, observed state or agent state.

• **Challenge:** choosing a threshold over the regret values

Design of Agents

7. SPECTRUM OF PARTIAL KNOWLEDGE THE SYSTEM DESIGNER HAS ABOUT NOVELTIES

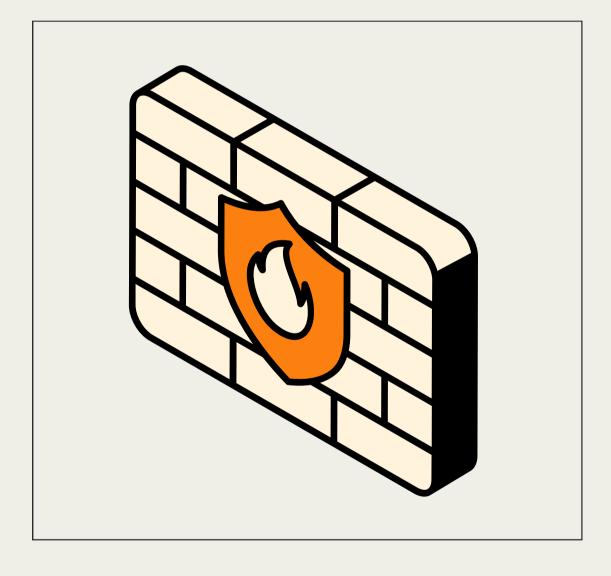
General problem in AI research: evaluations leak information

Novelty detection is particularly sensitive to information leaks between a novelty generator and novelty detector because novelty is unbounded.

• The search space is gigantic; leaks can artificially limit it.

A **firewall** should exist between generators and detectors.

Evaluation of Agents



7. SPECTRUM OF PARTIAL KNOWLEDGE THE SYSTEM DESIGNER HAS ABOUT NOVELTIES

Leak mitigation strategies:

- Have a sufficiently large validation set of data for the novelty detector to be trained with, with novelties that do not occur in the testing set for debugging purposes.
- Clearly describe everything considered to be known. This can be especially difficult with perception domains but is crucial since the problem becomes under-defined otherwise, making it impossible to tell the differences between nuisance novelty and managed novelty.
- During the creation of the novelty detector, ensure that the system is defined by looking for novelty rather than guessing a predefined set of potentially novel states.
- Ensure the problem space of potential novelties is large enough that it would be impossible to hand-code most of the novel states.

8. LACK OF MEASURES SPECIFIC TO OPEN WORLD LEARNING

Metrics that have proven inadequate for open world learning: Accuracy, Precision, Recall, F-1, AUC, and MCC

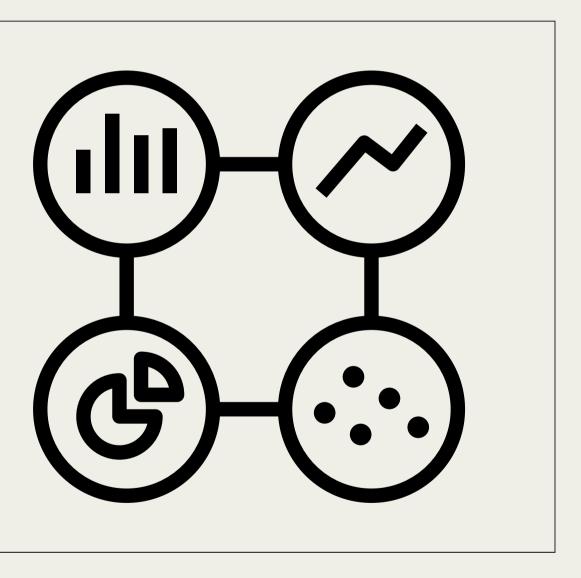
All are limited to classification
 performance

Uncertainty induced by an encounter with novelty should be assessed

Domain-independent measure for estimating the **complexity** level of a domain provides a way to compare different domains (Doctor et al. AAAI Spring Symposium on Designing AI for Open Worlds 2022).

Evaluation of Agents

Doctor et al., "Toward defining domain complexity measure across domains," AAAI Spring Symposium on Designing AI for Open Worlds 2022



ACKNOWLEDGEMENTS

Notre Dame **Steve Cruz**

Kitware **Chris Funk**

Naval Research Laboratory Katarina Doctor

Questions?